язык ассемблера пример кода

55a74ecc5eb3556f2e43b6349743936e Мобильные и смартфоны
Содержание
  1. Простая программа на ассемблере x86: Решето Эратосфена
  2. Вступительное слово
  3. С чего начать?
  4. Вызов подпрограмм
  5. Непосредственно программа
  6. Программирование на Ассемблере для начинающих с примерами программ
  7. IDE для Assembler
  8. Программа «Hello world» на ассемблере
  9. Сложение двух чисел на assembler
  10. Программа суммы чисел на ассемблере
  11. Получение значения из командной строки на ассемблере
  12. Циклы в ассемблере
  13. Сумма элементов массива на assembler
  14. Руководство по ассемблеру x86 для начинающих
  15. Настройка среды
  16. Hello, world!
  17. Makefile
  18. Системные вызовы
  19. Стек вызовов
  20. Соглашение о вызовах для архитектуры x86
  21. Правила вызывающей стороны
  22. Правила вызываемой подпрограммы
  23. Вход и выход
  24. Написание некоторых основных функций
  25. Создание стека
  26. Вывод чисел
  27. Вычисление обратной польской записи
  28. Дальнейшие действия
  29. Погружение в assembler. Полный курс по программированию на асме от ][
  30. Содержание статьи
  31. Что такое ассемблер?
  32. Синтаксис
  33. Директивы
  34. Достоинства и недостатки
  35. Почему следует изучать язык ассемблера?
  36. Ассемблер — программирование или искусство?
  37. Ассемблер и терминатор
  38. Отрасли практического применения
  39. Вместо заключения

Простая программа на ассемблере x86: Решето Эратосфена

Вступительное слово

По своей профессии я не сталкиваюсь с низкоуровневым программированием: занимаюсь программированием на скриптовых языках. Но поскольку душа требует разнообразия, расширения горизонтов знаний или просто понимания, как работает машина на низком уровне, я занимаюсь программированием на языках, отличающихся от тех, с помощью которых зарабатываю деньги – такое у меня хобби.

И вот, я хотел бы поделиться опытом создания простой программы на языке ассемблера для процессоров семейства x86, с разбора которой можно начать свой путь в покорение низин уровней абстракции.

Итак, посмотрим, что получилось.

С чего начать?

Пожалуй, самая сложная вещь, с которой сталкиваешься при переходе от высокоуровневых языков к ассемблеру, это организация памяти. К счастью, на эту тему на Хабре уже была хорошая статья.

Так же встает вопрос, каким образом на таком низком уровне реализуется обмен данными между внутренним миром программы и внешней средой. Тут на сцену выходит API операционной системы. В DOS, как уже было упомянуто, интерфейс был достаточно простой. К примеру, программа «Hello, world» выглядела так:

В Windows же для этих целей используется Win32 API, соответственно, программа должна использовать методы соответствующих библиотек:

Здесь используется файл win32n.inc, где определены макросы, сокращающие код для работы с Win32 API.

Я решил не использовать напрямую API ОС и выбрал путь использования функций из библиотеки Си. Так же это открыло возможность компиляции программы в Linux (и, скорее всего, в других ОС) – не слишком большое и нужное этой программе достижение, но приятное достижение.

Вызов подпрограмм

Потребность вызывать подпрограммы влечет за собой несколько тем для изучения: организация подпрограмм, передача аргументов, создание стекового кадра, работа с локальными переменными.

Для ее вызова нужно было бы использовать инструкцию call :

Для себя я решил передавать аргументы подпрограммам через регистры и указывать в комментариях, в каких регистрах какие аргументы должны быть, но в языках высокого уровня аргументы передаются через стек. К примеру, вот так вызывается функция printf из библиотеки Си:

Аргументы передаются справа налево, обязанность по очистке стека лежит на вызывающей стороне.

При входе в подпрограмму необходимо создать новый стековый кадр. Делается это следующим образом:

Соответственно, перед выходом нужно восстановить прежнее состояние стека:

Для локальных переменных так же используется стек, на котором после создания нового кадра выделяется нужное количество байт:

Так же архитектура x86 предоставляет специальные инструкции, с помощью которых можно более лаконично реализовать эти действия:

Второй параметр инструкции enter – уровень вложенности подпрограммы. Он нужен для линковки с языками высокого уровня, поддерживающими такую методику организации подпрограмм. В нашем случае это значение можно оставить нулевым.

Непосредственно программа

Источник

Программирование на Ассемблере для начинающих с примерами программ

Многие считают, что Assembler – уже устаревший и нигде не используемый язык, однако в основном это молодые люди, которые не занимаются профессионально системным программированием. Разработка ПО, конечно, хорошо, но в отличие от высокоуровневых языков программирования, Ассемблер научит глубоко понимать работу компьютера, оптимизировать работку с аппаратными ресурсами, а также программировать любую технику, тем самым развиваясь в направлении машинного обучения. Для понимания этого древнего ЯП, для начала стоит попрактиковаться с простыми программами, которые лучше всего объясняют функционал Ассемблера.

IDE для Assembler

Первый вопрос: в какой среде разработки программировать на Ассемблере? Ответ однозначный – MASM32. Это стандартная программа, которую используют для данного ЯП. Скачать её можно на официальном сайте masm32.com в виде архива, который нужно будет распаковать и после запустить инсталлятор install.exe. Как альтернативу можно использовать FASM, однако для него код будет значительно отличаться.

Перед работой главное не забыть дописать в системную переменную PATH строчку:

Программа «Hello world» на ассемблере

Считается, что это базовая программа в программировании, которую начинающие при знакомстве с языком пишут в первую очередь. Возможно, такой подход не совсем верен, но так или иначе позволяет сразу же увидеть наглядный результат:

Для начала запускаем редактор qeditor.exe в папке с установленной MASM32, и в нём пишем код программы. После сохраняем его в виде файла с расширением «.asm», и билдим программу с помощью пункта меню «Project» → «Build all». Если в коде нет ошибок, программа успешно скомпилируется, и на выходе мы получим готовый exe-файл, который покажет окно Windows с надписью «Hello world».

title 2018 02 16 00.10.58

Сложение двух чисел на assembler

В этом случае мы смотрим, равна ли сумма чисел нулю, или же нет. Если да, то на экране появляется соответствующее сообщение об этом, и, если же нет – появляется иное уведомление.

Здесь мы используем так называемые метки и специальные команды с их использованием (jz, jmp, test). Разберём подробнее:

Программа суммы чисел на ассемблере

Примитивная программа, которая показывает процесс суммирования двух переменных:

В Ассемблере для того, чтобы вычислить сумму, потребуется провести немало действий, потому как язык программирования работает напрямую с системной памятью. Здесь мы по большей частью манипулируем ресурсами, и самостоятельно указываем, сколько выделить под переменную, в каком виде воспринимать числа, и куда их девать.

Получение значения из командной строки на ассемблере

Одно из важных основных действий в программировании – это получить данные из консоли для их дальнейшей обработки. В данном случае мы их получаем из командной строки и выводим в окне Windows:

Также можно воспользоваться альтернативным методом:

Здесь используется invoke – специальный макрос, с помощью которого упрощается код программы. Во время компиляции макрос-команды преобразовываются в команды Ассемблера. Так или иначе, мы пользуемся стеком – примитивным способом хранения данных, но в тоже время очень удобным. По соглашению stdcall, во всех WinAPI-функциях переменные передаются через стек, только в обратном порядке, и помещаются в соответствующий регистр eax.

Циклы в ассемблере

Для создания цикла используется команда repeat. Далее с помощью inc увеличивается значение переменной на 1, независимо от того, находится она в оперативной памяти, или же в самом процессоре. Для того, чтобы прервать работу цикла, используется директива «.BREAK». Она может как останавливать цикл, так и продолжать его действие после «паузы». Также можно прервать выполнение кода программы и проверить условие repeat и while с помощью директивы «.CONTINUE».

Сумма элементов массива на assembler

Здесь мы суммируем значения переменных в массиве, используя цикл «for»:

С помощью команды jne выполняется переход по метке, основываясь на результате сравнения переменных. Если он отрицательный – происходит переход, а если операнды не равняются друг другу, переход не осуществляется.

Ассемблер интересен своим представлением переменных, что позволяет делать с ними что угодно. Специалист, который разобрался во всех тонкостях данного языка программирования, владеет действительно ценными знаниями, которые имеют множество путей использования. Одна задачка может решаться самыми разными способами, поэтому путь будет тернист, но не менее увлекательным.

Читайте также:  где на телефоне найти пароли

Источник

Руководство по ассемблеру x86 для начинающих

В наше время редко возникает необходимость писать на чистом ассемблере, но я определённо рекомендую это всем, кто интересуется программированием. Вы увидите вещи под иным углом, а навыки пригодятся при отладке кода на других языках.

В этой статье мы напишем с нуля калькулятор обратной польской записи (RPN) на чистом ассемблере x86. Когда закончим, то сможем использовать его так:

Весь код для статьи здесь. Он обильно закомментирован и может служить учебным материалом для тех, кто уже знает ассемблер.

Начнём с написания базовой программы Hello world! для проверки настроек среды. Затем перейдём к системным вызовам, стеку вызовов, стековым кадрам и соглашению о вызовах x86. Потом для практики напишем некоторые базовые функции на ассемблере x86 — и начнём писать калькулятор RPN.

Предполагается, что у читателя есть некоторый опыт программирования на C и базовые знания компьютерной архитектуры (например, что такое регистр процессора). Поскольку мы будем использовать Linux, вы также должны уметь использовать командную строку Linux.

Настройка среды

Как уже сказано, мы используем Linux (64- или 32-битный). Приведённый код не работает в Windows или Mac OS X.

Я бы также рекомендовал держать под рукой таблицу ASCII.

Hello, world!

Для проверки среды сохраните следующий код в файле calc.asm :

Комментарии объясняют общую структуру. Список регистров и общих инструкций можете изучить в «Руководстве по ассемблеру x86 университета Вирджинии». При дальнейшем обсуждении системных вызовов это тем более понадобится.

Следующие команды собирают файл ассемблера в объектный файл, а затем компонует исполняемый файл:

После запуска вы должны увидеть:

Makefile

Затем вместо вышеприведённых инструкций просто запускаем make.

Системные вызовы

Системные вызовы Linux указывают ОС выполнить для нас какие-то действия. В этой статье мы используем только два системных вызова: write() для записи строки в файл или поток (в нашем случае это стандартное устройство вывода и стандартная ошибка) и exit() для выхода из программы:

eax ebx ecx edx
Номер системного вызова arg1 arg2 arg3

Стек вызовов

image loader

Стек вызовов — структура данных, в которой хранится информация о каждом обращении к функции. У каждого вызова собственный раздел в стеке — «фрейм». Он хранит некоторую информацию о текущем вызове: локальные переменные этой функции и адрес возврата (куда программа должна перейти после выполнения функции).

Сразу отмечу одну неочевидную вещь: стек увеличивается вниз по памяти. Когда вы добавляете что-то на верх стека, оно вставляется по адресу памяти ниже, чем предыдущий элемент. Другими словами, по мере роста стека адрес памяти в верхней части стека уменьшается. Чтобы избежать путаницы, я буду всё время напоминать об этом факте.

Соглашение о вызовах для архитектуры x86

В х86 нет встроенного понятия функции как в высокоуровневых языках. Инструкция call — это по сути просто jmp ( goto ) в другой адрес памяти. Чтобы использовать подпрограммы как функции в других языках (которые могут принимать аргументы и возвращать данные обратно), нужно следовать соглашению о вызовах (существует много конвенций, но мы используем CDECL, самое популярное соглашение для x86 среди компиляторов С и программистов на ассемблере). Это также гарантирует, что регистры подпрограммы не перепутаются при вызове другой функции.

Правила вызывающей стороны

Перед вызовом функции вызывающая сторона должна:

Правила вызываемой подпрограммы

Перед вызовом подпрограмма должна:

image loader

Стек вызовов после шага 2:

image loader

Стек вызовов после шага 4:

image loader

На последней диаграмме также можно заметить, что локальные переменные функции всегда начинается на 4 байта выше ebp с адреса ebp-4 (здесь вычитание, потому что мы двигаемся вверх по стеку), а аргументы функции всегда начинается на 8 байт ниже ebp с адреса ebp+8 (сложение, потому что мы двигаемся вниз по стеку). Если следовать правилам из этой конвенции, так будет c переменными и аргументами любой функции.

Когда функция выполнена и вы хотите вернуться, нужно сначала установить eax на возвращаемое значение функции, если это необходимо. Кроме того, нужно:

Вход и выход

Написание некоторых основных функций

Здесь понадобится ещё одна функция _strlen для подсчёта длины строки. На C она может выглядеть так:

Другими словами, с самого начала строки мы добавляем 1 к возвращаемым значением для каждого символа, кроме нуля. Как только замечен нулевой символ, возвращаем накопленное в цикле значение. В ассемблере это тоже довольно просто: можно использовать как базу ранее написанную функцию _subtract :

И посмотрим плоды нашей тяжёлой работы, используя эту функцию в полной программе “Hello, world!”.

Хотите верьте, хотите нет, но мы рассмотрели все основные темы, которые нужны для написания базовых программ на ассемблере x86! Теперь у нас есть весь вводный материал и теория, так что полностью сосредоточимся на коде и применим полученные знания для написания нашего калькулятора RPN. Функции будут намного длиннее и даже станут использовать некоторые локальные переменные. Если хотите сразу увидеть готовую программу, вот она.

Создание стека

Теперь можно реализовать функции _push и _pop :

Вывод чисел

На C программа будет выглядеть примерно так:

Теперь вы понимаете, зачем нам эти три функции. Давайте реализуем это на ассемблере:

Теперь у нас есть все необходимые функции, осталось реализовать основную логику в _start — и на этом всё!

Вычисление обратной польской записи

Как мы уже говорили, обратная польская запись вычисляется с помощью стека. При чтении число заносится на стек, а при чтении оператор применяется к двум объектам наверху стека.

Например, если мы хотим вычислить 84/3+6* (это выражение также можно записать в виде 6384/+* ), процесс выглядит следующим образом:

Шаг Символ Стек перед Стек после
1 8 [] [8]
2 4 [8] [8, 4]
3 / [8, 4] [2]
4 3 [2] [2, 3]
5 + [2, 3] [5]
6 6 [5] [5, 6]
7 * [5, 6] [30]

Если на входе допустимое постфиксное выражение, то в конце вычислений на стеке остаётся лишь один элемент — это и есть ответ, результат вычислений. В нашем случае число равно 30.

В ассемблере нужно реализовать нечто вроде такого кода на C:

Теперь у нас имеются все функции, необходимые для реализации этого, давайте начнём.

И мы закончили! Удивите всех своих друзей, если они у вас есть. Надеюсь, теперь вы с большей теплотой отнесётесь к языкам высокого уровня, особенно если вспомнить, что многие старые программы писали полностью или почти полностью на ассемблере, например, оригинальный RollerCoaster Tycoon!

Весь код здесь. Спасибо за чтение! Могу продолжить, если вам интересно.

Дальнейшие действия

Можете попрактиковаться, реализовав несколько дополнительных функций:

Источник

Погружение в assembler. Полный курс по программированию на асме от ][

asm h

Содержание статьи

Это первая (вступительная) статья курса. Курс рассчитан на тех, кто в целом знаком с высокоуровневым программированием и только приступает к изучению ассемблера.

Читай далее:

Но что такое программирование само по себе по своей сути, вне зависимости от какого-либо языка? Разнообразие ответов поражает. Наиболее часто можно услышать такое определение: программирование — это составление инструкций или команд для последовательного исполнения их машиной с целью решить ту или иную задачу. Такой ответ вполне справедлив, но, на мой взгляд, не отражает всей полноты, как если бы мы назвали литературу составлением из слов предложений для последовательного прочтения их читателем. Я склонен полагать, что программирование ближе к творчеству, к искусству. Как любой вид искусства — выражение творческой мысли, идеи, программирование представляет собой отражение человеческой мысли. Мысль же бывает и гениальная, и совершенно посредственная.

Но, каким бы видом программирования мы ни занимались, успех зависит от практических навыков вкупе со знанием фундаментальных основ и теории. Теория и практика, изучение и труд — вот краеугольные камни, на которых основывается успех.

Читайте также:  водоканал солнечногорск телефон официальный сайт

В последнее время ассемблер незаслуженно находится в тени других языков. Обусловлено это глобальной коммерциализацией, направленной на то, чтобы в максимально короткие сроки получить как можно большую прибыль от продукта. Иными словами, массовость взяла верх над элитарностью. А ассемблер, по моему мнению, ближе к последнему. Гораздо выгоднее в сравнительно небольшие сроки поднатаскать ученика в таких, например, языках, как С++, С#, PHP, Java, JavaScript, Python, чтобы он был более-менее способен создавать ширпотребный софт, не задаваясь вопросами, зачем и почему он так делает, чем выпустить хорошего специалиста по ассемблеру. Примером тому служит обширнейший рынок всевозможных курсов по программированию на любом языке, за исключением ассемблера. Та же тенденция прослеживается как в преподавании в вузах, так и в учебной литературе. В обоих случаях вплоть до сегодняшнего дня большая часть материала базируется на ранних процессорах серии 8086, на так называемом «реальном» 16-битном режиме работы, операционной среде MS-DOS! Возможно, что одна из причин в том, что, с одной стороны, с появлением компьютеров IBM PC преподавателям пришлось перейти именно на эту платформу из-за недоступности других. А с другой стороны, по мере развития линейки 80х86 возможность запуска программ в режиме DOS сохранялась, что позволяло сэкономить деньги на приобретение новых учебных компьютеров и составление учебников для изучения архитектуры новых процессоров. Однако сейчас такой выбор платформы для изучения совершенно неприемлем. MS-DOS как среда выполнения программ безнадежно устарела уже к середине девяностых годов, а с переходом к 32-битным процессорам, начиная с процессора 80386, сама система команд стала намного более логичной. Так что бессмысленно тратить время на изучение и объяснение странностей архитектуры реального режима, которые заведомо никогда уже не появятся ни на одном процессоре.

Что касается выбора операционной среды для изучения ассемблера, то, если говорить о 32-битной системе команд, выбор сравнительно невелик. Это либо операционные системы Windows, либо представители семейства UNIX.

Также следует сказать несколько слов о том, какой именно ассемблер выбрать для той или другой операционной среды. Как известно, для работы с процессорами х86 используются два типа синтаксиса ассемблера — это синтаксис AT&T и синтаксис Intel. Эти синтаксисы представляют одни и те же команды совершенно по-разному. Например, команда в синтаксисе Intel выглядит так:

В синтаксисе же AT&T уже будет иной вид:

В среде ОС UNIX более популярен синтаксис типа AT&T, однако учебных пособий по нему нет, он описывается исключительно в справочной и технической литературе. Поэтому логично выбрать ассемблер на основе синтаксиса Intel. Для UNIX-систем есть два основных ассемблера — это NASM (Netwide Assembler) и FASM (Flat Assembler). Для линейки Windows популярностью пользуются FASM и MASM (Macro Assembler) от фирмы Microsoft, и также существовал еще TASM (Turbo Assembler) фирмы Borland, которая уже довольно давно отказалась от поддержки собственного детища.

В данном цикле статей изучение будем вести в среде Windows на основе языка ассемблера MASM (просто потому, что он мне нравится больше). Многие авторы на начальном этапе изучения ассемблера вписывают его в оболочку языка си, исходя из тех соображений, что перейти к практическим примерам в операционной среде якобы довольно трудно: нужно знать и основы программирования в ней, и команды процессора. Однако и такой подход требует хоть мало-мальских начатков знаний в языке си. Данный же цикл статей от самого своего начала будет сосредоточен только на самом ассемблере, не смущая читателя ничем иным, ему непонятным, хотя в дальнейшем и будет прослеживаться связь с другими языками.

Следует отметить, что при изучении основ программирования, и это касается не только программирования на ассемблере, крайне полезно иметь представление о культуре консольных приложений. И совершенно нежелательно начинать обучение сразу же с создания окошечек, кнопочек, то есть с оконных приложений. Бытует мнение, что консоль — архаичный пережиток прошлого. Однако это не так. Консольное приложение почти лишено всякой внешней зависимости от оконной оболочки и сосредоточено главным образом на выполнении конкретно поставленной задачи, что дает прекрасную возможность, не отвлекаясь ни на что другое, концентрировать внимание на изучении базовых основ как программирования, так и самого ассемблера, включая знакомство с алгоритмами и их разработку для решения практических задач. И к тому моменту, когда настанет время перейти к знакомству с оконными приложениями, за плечами уже будет внушительный запас знаний, ясное представление о работе процессора и, самое главное, осознание своих действий: как и что работает, зачем и почему.

Что такое ассемблер?

Само слово ассемблер (assembler) переводится с английского как «сборщик». На самом деле так называется программа-транслятор, принимающая на входе текст, содержащий условные обозначения машинных команд, удобные для человека, и переводящая эти обозначения в последовательность соответствующих кодов машинных команд, понятных процессору. В отличие от машинных команд, их условные обозначения, называемые также мнемониками, запомнить сравнительно легко, так как они представляют собой сокращения от английских слов. В дальнейшем мы будем для простоты именовать мнемоники ассемблерными командами. Язык условных обозначений и называется языком ассемблера.

На заре компьютерной эры первые ЭВМ занимали целые комнаты и весили не одну тонну, имея объем памяти с воробьиный мозг, а то и того меньше. Единственным способом программирования в те времена было вбивать программу в память компьютера непосредственно в цифровом виде, переключая тумблеры, проводки и кнопочки. Число таких переключений могло достигать нескольких сотен и росло по мере усложнения программ. Встал вопрос об экономии времени и денег. Поэтому следующим шагом в развитии стало появление в конце сороковых годов прошлого века первого транслятора-ассемблера, позволяющего удобно и просто писать машинные команды на человеческом языке и в результате автоматизировать весь процесс программирования, упростить, ускорить разработку программ и их отладку. Затем появились языки высокого уровня и компиляторы (более интеллектуальные генераторы кода с более понятного человеку языка) и интерпретаторы (исполнители написанной человеком программы на лету). Они совершенствовались, совершенствовались — и, наконец, дошло до того, что можно просто программировать мышкой.

Таким образом, ассемблер — это машинно ориентированный язык программирования, позволяющий работать с компьютером напрямую, один на один. Отсюда и его полная формулировка — язык программирования низкого уровня второго поколения (после машинного кода). Команды ассемблера один в один соответствуют командам процессора, но поскольку существуют различные модели процессоров со своим собственным набором команд, то, соответственно, существуют и разновидности, или диалекты, языка ассемблера. Поэтому использование термина «язык ассемблера» может вызвать ошибочное мнение о существовании единого языка низкого уровня или хотя бы стандарта на такие языки. Его не существует. Поэтому при именовании языка, на котором написана конкретная программа, необходимо уточнять, для какой архитектуры она предназначена и на каком диалекте языка написана. Поскольку ассемблер привязан к устройству процессора, а тип процессора жестко определяет набор доступных команд машинного языка, то программы на ассемблере не переносимы на иную компьютерную архитектуру.

Поскольку ассемблер всего лишь программа, написанная человеком, ничто не мешает другому программисту написать свой собственный ассемблер, что часто и происходит. На самом деле не так уж важно, язык какого именно ассемблера изучать. Главное — понять сам принцип работы на уровне команд процессора, и тогда не составит труда освоить не только другой ассемблер, но и любой другой процессор со своим набором команд.

Синтаксис

Общепринятого стандарта для синтаксиса языков ассемблера не существует. Однако большинство разработчиков языков ассемблера придерживаются общих традиционных подходов. Основные такие стандарты — Intel-синтаксис и AT&T-синтаксис.

Общий формат записи инструкций одинаков для обоих стандартов:

Опкод — это и есть собственно ассемблерная команда, мнемоника инструкции процессору. К ней могут быть добавлены префиксы (например, повторения, изменения типа адресации). В качестве операндов могут выступать константы, названия регистров, адреса в оперативной памяти и так далее. Различия между стандартами Intel и AT&T касаются в основном порядка перечисления операндов и их синтаксиса при разных методах адресации.

Читайте также:  англетер гостиница номер есенина сейчас

Используемые команды обычно одинаковы для всех процессоров одной архитектуры или семейства архитектур (среди широко известных — команды процессоров и контроллеров Motorola, ARM, x86). Они описываются в спецификации процессоров.

Например, процессор Zilog Z80 наследовал систему команд Intel i8080, расширил ее и поменял некоторые команды (и обозначения регистров) на свой лад. Например, сменил Intel-команду mov на ld. Процессоры Motorola Fireball наследовали систему команд Z80, несколько ее урезав. Вместе с тем Motorola официально вернулась к Intel-командам, и в данный момент половина ассемблеров для Fireball работает с Intel-командами, а половина — с командами Zilog.

Директивы

Кроме ассемблерных команд, программа может содержать директивы — команды, не переводящиеся непосредственно в машинные инструкции, а управляющие работой компилятора. Набор и синтаксис их значительно разнятся и зависят не от аппаратной платформы, а от используемого компилятора. В качестве набора директив можно выделить:

Достоинства и недостатки

К достоинствам можно отнести следующее:

За недостатки можно принять:

Почему следует изучать язык ассемблера?

В современной практике индустриального программирования языки ассемблера применяются крайне редко. Для разработки низкоуровневых программ практически в большинстве случаев используется язык си, позволяющий достигать тех же целей многократно меньшими затратами труда, причем с такой же, а иногда и большей эффективностью получаемого исполняемого кода (последнее достигается за счет применения оптимизаторов). На ассемблере сейчас реализуются очень специфические участки ядер операционных систем и системных библиотек. Более того, программирование на ассемблере было вытеснено и из такой традиционно ассемблерной области, как программирование микроконтроллеров. Большей частью прошивки для них также пишут на си. Тем не менее программирование на языке ассемблера очень часто применяется при написании программ, использующих возможности процессора, не реализуемые языками высокого уровня, а также при программировании всевозможных нестандартных программистских хитростей. Отдельные ассемблерные модули, как и ассемблерные вставки в текст на других языках, присутствуют и в ядрах операционных систем, и в системных библиотеках того же языка си и других языков высокого уровня. Сегодня едва ли кому придет в голову сумасшедшая мысль писать крупную программу на чистом ассемблере.

Так зачем же тратить время на его изучение? По ряду веских причин, и вот одна из них: ассемблер — это краеугольный камень, на котором покоится все бесконечное пространство программирования, начиная от рождения первого процессора. Каждый физик мечтает разгадать тайну строения вселенной, найти эти загадочные первичные неделимые (низкоуровневые) элементы, из которых она состоит, не удовлетворяясь лишь смутным о том представлением квантовой теории. Ассемблер же и есть та первичная материя, из которой состоит вселенная процессора. Он — тот инструмент, который дает человеку способность мыслить в терминах машинных команд. А подобное умение просто необходимо любому профессиональному программисту, даже если никогда в жизни он не напишет ни единой ассемблерной строчки. Нельзя отрицать того, что невозможно стать математиком, совершенно не имея понятия об элементарной арифметике. На каком бы языке вы ни писали программы, необходимо хотя бы в общих чертах понимать, что конкретно будет делать процессор, исполняя ваше высочайшее повеление. Если такого понимания нет, программист начинает бездумно применять все доступные операции, совершенно не ведая, что на самом деле он творит.

Вообще, профессиональный пользователь компьютера, системный ли администратор, или программист, может позволить себе что-то не знать, но ни в коем случае не может позволить не понимать сути происходящего, как устроена вычислительная система на всех ее уровнях, от электронных логических схем до громоздких прикладных программ. А непонимание чего-то влечет за собой ощущение в глубине подсознания некоей загадочности, непостижимого таинства, происходящего по мановению чьей-то волшебной палочки. Такое ощущение для профессионала недопустимо категорически. Он просто обязан быть уверен вплоть до глубинных слоев подсознания, что то устройство, с которым он имеет дело, ничего волшебного и непознаваемого собой не представляет.

Иными словами, до тех пор пока существуют процессоры, ассемблер будет необходим.

В этом отношении совершенно не важно, какую конкретно архитектуру и язык какого конкретного ассемблера изучать. Зная один язык ассемблера, ты с успехом можешь начать писать на любом другом, потратив лишь некоторое время на изучение справочной информации. Но самое главное в том, что, умея мыслить языком процессора, ты всегда будешь знать, что, для чего, почему и зачем происходит. А это уже не просто уровень программирования мышкой, а путь к созданию программного обеспечения, несущего печать великого мастерства.

Ассемблер — программирование или искусство?

Скажем так, все зависит от того, в чьих руках он находится. Ассемблер — это первичный элемент мира процессора, из сочетаний этих элементов складывается его душа, его самосознание. Подобно тому, как вся музыка, написанная в истории человечества, состоит из сочетаний семи нот, так и сочетание ассемблерных команд наполняет компьютерный мир цифровой жизнью. Кто знает лишь три аккорда — это «попса», кому же известна вся палитра — это классика.

Почему же наука так жаждет проникнуть в квантовые глубины и захватить в свои руки неуловимый первичный кирпичик материи? Чтобы получить над ней власть, изменять ее по своей воле, стать на уровень Творца Вселенной. В чьи руки попадет такая власть — это еще вопрос. В отличие от науки, в мире программирования тайн нет, нам известны кирпичики, его составляющие, а следовательно, и та власть над процессором, которую нам дает знание ассемблера.

Чтобы программирование на языке ассемблера поднялось на уровень искусства, нужно постичь его красоту, скрывающуюся за потоком единиц и нулей. Как и в любой отрасли человеческой деятельности, в программировании можно быть посредственностью, а можно стать Мастером. И то и другое отличает степень культуры, образования, труда и, главное, то, сколько души автор вкладывает в свое творение.

Ассемблер и терминатор

Не так давно Джеймс Кэмерон выпустил в свет 3D-версию второго «Терминатора», и в качестве интересного исторического факта можно отметить один любопытный момент из жизни киборга-убийцы.

terminator Кадр из фильма «Терминатор»

Здесь мы видим «зрение» терминатора, а слева на нем отображается ассемблерный листинг. Судя по нему, знаменитый Уничтожитель работал на процессоре MOS Technology 6502 либо на MOS Technology 6510. Этот процессор впервые был разработан в 1975 году, использовался на компьютерах Apple и, помимо всего прочего, на знаменитых игровых приставках того времени Atari 2600 и Nintendo Entertainment System (у нас более известной как Dendy). Имел лишь три 8-разрядных регистра: А-аккумулятор и два индексных регистра X и Y. Такое малое их количество компенсировалось тем, что первые 256 байт оперативной памяти (так называемая нулевая страница) могли адресоваться специальным образом и фактически использовались в качестве 8-разрядных или 16-разрядных регистров. У данного процессора было 13 режимов адресации на всего 53 команды. У терминатора идет цепочка инструкций LDA-STA-LDA-STA. В семействе 6502 программы состояли чуть менее чем полностью из LDA/LDY/LDX/STA/STX/STY:

Чтение и запись в порты ввода-вывода также выполнялись этими командами, и программа терминатора имеет вполне осмысленный вид, а не представляет собой бестолковую фантазию сценариста: MOS Technology 6502 / Система команд.

Отрасли практического применения

Ранее упоминалось, что в наше время ассемблер почти вытеснен языками высокого уровня. Однако и по сей день ему находится применение. Приведем некоторые примеры.

Вместо заключения

Мы продолжим погружаться в ассемблер в следующих статьях цикла. Темы этого цикла мы в целом определили, но если у тебя есть какие-нибудь идеи или пожелания — смело пиши в комменты, все учтем. ?

Источник

Мобилка
Adblock
detector